Algal growth (PhD Thesis, O. Fovet, 2010, p.101)
Definition
The biomass growth is calculated at time t, in each section x as follows :
$\frac{\partial B}{\partial t}(x,t) = \mu(x,t) B(x,t) F_{lim}(B’(x,t))$
where :
- $F_{lim}(B’(x,t)) = \left ( 1 - \frac{B’(x,t)}{B_{Max}} \right )$
- $ \mu(x,t) = \mu_{0} \theta^{T(t)-T_{0}} \frac{I(x,t)}{I_{opt}} e^{1- \frac{I(x,t)}{I_{opt}}} \textup{min} \left ( \frac{N_{i}(x,t)}{N_{i}(x,t) + K_{N_{I}}} \right )$
- $ I(x,t) = I_{s}(x,t) e^{-k_{ext} h(x,t)} $
- $ I_{s}(x,t) = (1-C_m(x))(1-a)R_N(t) $
Variables and parameters
- $ B(x,t) $ : fix biomass modified by the law (kg m-1)
- $ B’(x,t) $ : fix biomass parameter in the law (kg m-1)
- $ B_{Max} $ : maximum value of fix biomass (kg m-1)
- $ \mu_{0} $ : reference growth rate (s -1)
- $ \theta $ : growth coefficient
- $ T(x,t) $ : water temperature (°C)
- $ T_{0} $ : reference temperature (°C)
- $ I(x,t) $ : light intensity at the section’s bottom (W m-2)
- $ I_{s}(x,t) $ : solar light intensity (W m-2)
- $ C_{m}(x)$ : mask coefficient (cf. Temperature simulation)
- $ a $ : albedo (cf. Temperature simulation)
- $ R_{N}(t) $ solar radiation (W m-2) (cf. Temperature simulation)
- $ k_{ext} $ : extinction coefficient (due to turbidity)
- $ h(x,t) $ : mean water level (m)
- $ I_{opt}(x,t) $ : optimum light intensity (W m-2)
- $ N_{i}(x,t) $ : concentration of nutrient i (kg m-3)
- $ K_{N_{i}} $ : half-saturation constant of nutrient i (kg m-3)
Limiting nutrient
This law can take into account up to 3 nutrients for algae growth. If less than three nutrients are used, $ K_{N_{i}} $ for unused nutrients should be set to 0.
Specifications
- Law’s ID : 301
- Number of acting classes: 6
- Number of meteo parameters : 3
- Number of parameters : 9
Acting classes :
- $ B(x,t) $ :the class modified by the law
- $ B’(x,t) $ : the parameter class of the law
- $ T(x,t) $ :Water temperature
- $ N_{1}(x,t) $ : Nutrient 1
- $ N_{2}(x,t) $ : Nutrient 2
- $ N_{3}(x,t) $ : Nutrient 3
Meteo parameters :
- $ C_{m}(x)$
- $ a $
- $ R_{N}(t) $
Parameters
- $ B_{Max} $ : maximum value of fix biomass
- $ \mu_{0} $ : reference growth rate
- $ \theta $ : growth coefficient
- $ T_{0} $ : reference temperature
- $ k_{ext} $ : extinction coefficient
- $ I_{opt} $ : optimum light intensity
- $ K_{N_{1}} $ : half-saturation constant of nutrient 1
- $ K_{N_{2}} $ : half-saturation constant of nutrient 2
- $ K_{N_{3}} $ : half-saturation constant of nutrient 3