Algual detachment in response to flushing with reference shear stress equal to the first time step
Definition
The rate of accidental detachment of fix algae $ b_i $ towards drift algae $ a_i $ is calculated in each section as follows :
$$ \frac{\partial B_i}{\partial t}(x,t) = -S\frac{\partial A_i}{\partial t}(x,t) = -\frac{1}{\delta}\left ( \frac{\tau_{0}(x,t) - \tau_{0}(x,0)}{\tau_{0}(x,0)} - s_B \right )^\eta B_j(x,t) $$
if $ \frac{\tau_{0}(x) - \tau_{0}(x,0)}{\tau_{0}(x,0)} > s_B $
$ \frac{\partial A_i}{\partial t}(x,t) = \frac{\partial B_i}{\partial t}(x,t) = 0 $ atherwise.
Where :
- $ A_i(x,t) $ : drift algae (kg/m3)
- $ B_i(x,t) $ : fix algae (kg/m)
- $ B_j(x,t) $ : fix algae ($i=j$ for standard applications).
- $ S(x) $ : e cross sectional area (m2)
- $ \tau(x,t) $ : shear stress (N m-2)
- $ \tau_{0}(x,0) $ : shear stress at $t=0$
- $ s_B $ : sensitivity treshold
- $ \delta $ : time constant (s)
- $ \eta $ : adimensional exponent
Specifications
- Law’s ID : 341
- Number of acting classes : 3
- Number of parameters : 3
Acting classes :
- $ A_i $ : drift class modified by the law
- $ B_i $ : fix class modified by the law
- $ B_j $ : the parameter class of the law
Parameters :
- $ s_B $ : sensitivity treshold
- $ \delta $ : time constant
- $ \eta $ : adimensional exponent